

An Overview of the SOAREX and

TechEdSat Flight Series:

Missions To Advance Re-entry Experimentation, Planetary Mission Design,

and

Flight Technology

M.S. Murbach, SOAREX/TES-Team

IPPW-12

Koln, Germany

June 15, 2015

Abstract

A series of sub-orbital flights (SOAREX - Sub-Orbital Aerodynamic Re-entry Experiments) and nanosatellite flights are described. These flights originated in 1998 with SOAREX-1 and most recently SOAREX-8 and TechEdSat-5 are planned for flight in 2015. The SOAREX flights have involved the use of both land (White Sands Missile Range) and water (Wallops Flight Facility)using a variety of rockets. jettison, data storage/telemetry techniques. The SOAREX-1 flight involved 11 independent entry experiments which included self-stabilization techniques, auto-initiated transpiration cooling, linearaerobrake, Slotted-Compression Ramp Probe (SCRAMP)techniques as well as initial use of MEMs sensors. The next SOAREX flights involved work on stabilization and flight experimentation with high L/D on a 'modified-Hankey' type of geometry. SOAREX 6, 7 experiments included a 4km/s entry shockinteraction experiment, and advanced planetary probe design leading to the self-stabilizing Tube Deployed Re-entry Vehicle (TDRV). The complementary orbital series involved the nano-satellitemodular design with TechEdSat-1 (TES-1) being the first U.S. cubesat to be jettisoned from the International Space Station (ISS). TES-2 was the first demonstration of the use of an existing satellite network to greatly increase the data-rate from nano-satellites. TES-3 and TES-4 were both 3U nano-satellites which included advanced communication as well as the first small-scale Exo-Brake flight tests. TES-4 featured the first nanosatelltie to be commanded by email commands. All of the flight experiments were carried out with modest budgets and short timelines - embodying a 'rapid proto-flight' technique of developing the flight experiments.

Origins: Rapid 'Proto-Flight'

Primary motivations:

- -Rapidly advance SOA in various technology areas
- -Student internship/mentoring

SOAREX-1 (Sub-orbital; 1998)

SOAREX-8 in development (7-7-15 launch)

TES-5 in development (complete 9-30-15)

To date:

- * Multiple balloon flights (Uofldaho)
- * 8 Sub-orbital payloads (+18 re-entry)
- * 4 Nanosatellite experiments

Collaborations Have Been Numerous

Key: P. Papadopoulos/SJSU; D. Atkinson/U.of Idaho

Institutions: ARC, WFF, LaRC, SJSU, Uofldaho, UCR, USC, NRL, NPG,...

Summary/Platforms

Balloon:

VAST Program/University of Idaho Since 2006

7-7-2015

Sub-orbital Flights – **SOAREX** (Sub-Orbital Aerodynamic Re-entry Experiments)

SOAREX-1	9-30-1998	Deployed 11 re-entry exps.
SOAREX-2	12-18-2002	Deployed 3 re-entry exps.
SOAREX-3	7-15-2003*	Deployed 1 proto-waverider
SOAREX-4/5	Delayed	Built - not flown; Dual waverider
SOAREX-6	9-28-2008*	Deployed 3 experiments; vehicle failed
SOAREX-7	5-28-2009	Deployed 1 TDRV

SOAREX-9 Planned

lanned In development

Full-scale Exo-Brake/ Adv COM/WSM

Orbital Flight – **TES** (TechEdSat-N)

SOAREX-8

TES-1	10-4-2012	First 1U U.S. CubeSat from ISS
TES-2	4-21-2013	First Iridium/COM experiment
TES-3	11-30-2014*	First Exo-Brake flight test
TES-4	3-4-2014	Adv COM/Control; Exo-Brake 2
TES-5	7-7-2015	Modulated Exo-Brake/COM

Vehicle:

Date:

Approach:

Experiments

Terrier- Black-Brant/36,150 12-30-1998

(234km apogee)

Axial deployment of 11 experiments/sabot; Minimal TM

Various- SCRAMP, Linear Aerobrake; T-piration cooling; empty

duct stabilization

Key Attributes:

- Multiple-radial ejector system
- 10 ft. ejector (3 m)
- On-board data-storage (.1 kHz sample)
- 'Wind tunnel in the sky' concept
- WSMR launch permitted recovery
- ALL 11/11 experiments located
- Key experiments
 - dynamic stability of NSC and other
 - **SCRAMP**
 - Transpiration cooling technique
 - Linear aerobrake (stability at interface)
 - Duct stabilization/recovery

Vehicle: ATK Sub-orbital/Orion 50xl (4km/s entry velocity)

Date: Sept 27, 2008

Approach: Deployed < apogee; Interlocking SIRCA tiles on tail

Experiments: High Ve SCRAMP; Atm probe; early TDRV; 'Long down-range'

Result: All experiments functioned in flight; vehicle 'terminated'

Vehicle: Terrier-Orion (WFF launch; 134km apogee)

Date: May 28, 2009

Approach: Deployed < apogee; Axial ejection with cameras/TM

Experiments: TDRV (Tube Deployed Re-entry Vehicle) flight test

Result: Successful demonstration of self-stabilization/low-β design

Key Attributes:

- Large static margin
- Self-orienting
- Low ballistic coefficient (order <10 kg/m2)
- Compact stowage (cylindrical)
- Both slot/no-slot versions investigated
- Hot-structure (unique flexible sandwich construction)
- TM (S-band/ C-band)

SOAREX-M/TechEdSat-N

Vehicle: Terrier Black-Brant (formerly Terrier-Peregrine test flight

7-7-15 planned (very high certainty) Date:

Forward ejection of '50U'; Nosecone experiments Approach:

Experiments: First 'full-scale' test of the Exo-Brake

- X-band (2 W) / 10+ Mbs
- ISM-band (1 mW) 1 Mbs
- C-band transponder/ skin trackingi
- Wireless Sensor Module (WSM)
- Modular Manufacturable Cubesat Design

Section 1.0 – Mission Manager DR – 12.077/Brodell

Te

Ames Des le per l'in la se la l'in-

Typical TRAJ run; 350km Apogee:

Integrator step size: Minimum = 6.48e-02 sec., Last value = 1.000000 sec. Vehicle impacted planet's surface at 1909.31 sec., 8.95 meter/sec

Maximum Values								
Value	Quantity	Time (sec)	Altitude (km)		Ball.Coef. (kg/m^2)			
Deceleration Magnitude	133.60 m/sec^2 13.62 g	258.9	53.93	1.44	5.00			
Dyn. Pressure	6.68e+02 pascals	258.9	53.93	1.44	5.00			
Stg. Pressure	1.01e+05 pascals	1909.2	0.00	0.01	5.00			
Cnv. Heat Flux	1.42 W/cm^2	253.2	63.84	2.03	5.00			
Tot. Heat Flux	1.42 W/cm^2	253.2	63.84	2.03	5.00			
Wall Temp.	747.92 K	Same as above line.						

(Time=0 at Apogee; recalculated 5-11-15)

Initial DSMC Calculations for Representative Nanosatellite

Nano-Sat and Exo-Brake Radiative Equilibrium Temperature DSMC at Kn $_{_{1}}$ = 10, α = 0 $^{\circ}$, ϵ = 0.85, 126 km Altitude

Nano-Sat and Exo-Brake Radiative Equilibrium Temperature DSMC at Kn $_{1}$ = 0.025, α = 0°, ϵ = 0.85, 88 km Altitude

C. Glass (LaRC) – DSMC preliminary results H= 126km, Kn=10; H=88km, Kn=.025

Motivations

Pioneering the Use of the International Space Station as a Nanosatellite

Deployment And Technology Platform

Vehicle: HTV-3

Date: 10-4-2012 (launch 4-14-2012) ~7 month duration

Approach: Single 1U cubesat launched from the ISS

Experiments: Rad-tolerant architecture/COM; ISS Safety Methodology

Key Attributes:

- First U.S. Cubesat jettisoned from the ISS
- 2-tier rad-tolernant architecture (AAC Microtec)
- COM (UHF, Iridium/OrbCOM (disconnected)
- · ISS Safety/Inhibit design verification
- Tracking/housekeeping data for future flights

TechEdSat 1

Other Key Contributors: J. Cortez, D. LeVasseur, A. Cohen, K. Ramus, G. Trinh and C. Hartney.

Vehicle: Antares-1

Date: 4-21-2012) ~ 1 day duration (experiment)

Approach: Single 1U cubesat/piggyback (PhoneSat)

Experiments: First Iridium COM experiment

Key Attributes:

- First U.S. Cubesat jettisoned from Antares-1
- Single cubesat experiment (Phonesat)
- COM experiment
- Battery-operated Iridium experiment (short)
- Incremental test for future flights

TechEdSat 2 (+Phonesat)

Other Key Contributors: K. Boronowsky, J. Benton, K. Ramus,

Vehicle: HTV-4

Date: 11-23-14 to 1-6-2014 (Launch 4-20-2013)

Approach: 3U cubesat from JSSOD launcher

Experiments: First Exo-Brake flight test (1/10 scale)

Key Attributes:

- First U.S. 3U Cubesat jettisoned from ISS
- Simple structural design/extrusion
- Unique safety inhibits (ALI switches)
- COM/gps experiment
- Four strut Exo-Brake (.3m²)
- Dual architecture/ UHF back-up
- Exo-Brake β=7.5 kg/m²

TechEdSat 3

Other Key Contributors: A. Guarneros-Luna, P. Papadopoulos, D. Atkinson, A. Reuter, J. Mojica, J. Benson, M. Scales, G. Pearhill

Vehicle: HTV-5

Date: 3-4 to 4-3-2015 (Launch 8-4-2014)

Approach: 3U cubesat from NRCSD laucher (NanoRacks Cube-Sat Deployer

Experiments: Second Exo-Brake flight test (1/10 scale); Email control

Key Attributes:

- First U.S. 3U Cubesat jettisoned NRCSD
- Simple structural design/extrusion
- Unique safety inhibits (ALI switches)
- COM/gps experiment
- Dual strut Exo-Brake (.3m²)
- Dual architecture/ Iridium modems
- Exo-Brake β=6.0 kg/m²

TechEdSat-4

Other Key Contributors: A. Guarneros-Luna, P. Papadopoulos, D. Atkinson, A. Reuter, J. Mojica, J. Benson, M. Scales, j. Seneris, A. DiQuattro, K. Sok, G. Pearhill

TES-3/TES-4 Comparison

Other Key Contributors: A. Guarneros-Luna, P. Papadopoulos, D. Atkinson, A. Reuter, J. Mojica, J. Benson, M. Scales, j. Seneris, A. DiQuattro, K. Sok, G. Pearhill

High temperature cross-parachute.

*Not to scale

*Note: Times / Altitudes between graphs are not to scale

Applications

ISS Small Sample Return (SPQR)

3 stage concept

- On-demand sample return
- COM IV experiment

Re-entry test-bed

Atromos: Cubesat
Mission to the Surface of
Mars

Summary

- TES-N series has helped to train ~40 individual now at NASA, SpaceX, Boeing, Lockheed and ...Start-ups!
- Methods for 'Rapid Proto-flight' developed
- Low cost/ high ROI approach/ incremental test
- Numerous Technologies Advanced
 - COM, 'Long-downrange' for re-entry technology
 - Fabrication/evolutionary approaches
 - De-Orbit Systems (Exo-Brake)
 - Evolving 2-tier Architecture
- Pioneered ISS Safety Processes for Satellite Jettison
- Future Work leads to ISS Sample Return, Advance Reentry Development And Mars!

References

Key References:

Marcus S. Murbach, "SCRAMP: The Development of an Advanced Planetary Probe from CFD to Re-entry Test Flight," International Planetary Probe Conference, Athens, Greece, June 27-July 1, 2005.

M.Murbach, et al, "ATROMOS - An Innovative Mars Polar Science Mission," NASA Ames Research Center, July 30, 2006.